Perovskite solar cells:
How close is the breakthrough?

Etwa seit dem Jahr 2010 macht eine neue Geräteklasse in größerem Maßstab von sich reden: Sogenannte Wearables sind elektronische Kleingeräte, die mittels integrierter Sensorik physische, physiologische sowie Umgebungsdaten messen können. In hochentwickelten Ländern liegt der Anteil der Nutzer bereits bei etwa 20 bis 25 Prozent, Tendenz steigend. Wearables sind vielfältig und innovativ: Neben den weitverbreiteten Fitness-Trackern und Smartwatches gibt es auch smarte Kleidung (E-Textilien) und medizinische Wearables im engeren Sinne. Auch Gadgets in Form von Datenbrillen, Ringen, Halsketten, Handschuhen und Schuhen gehören dazu.

Ebenso weitgefächert sind die Anwendungsbereiche: Von der Überwachung der Gesundheit (z.B. Herzfrequenz, EKG, Schlafmonitoring) über Sport und Fitness (Schrittzähler, Kalorienverbrauch, Sauerstoffsättigung im Blut etc.) bis hin zu speziellen Einsatzzwecken in der Industrie (Exoskelette, Belastungsmessung), Medizin (Sensorpflaster, smarte Inhalatoren etc.) und beim Militär (Vitalparameter-Tracking bei Soldaten).

What are perovskites?

In jedem Wearable stecken verschiedene Sensoren zur Bewegungserkennung. Beschleunigungssensoren erfassen Bewegungen in den drei Raumachsen; Gyroskope messen Drehbewegungen; GPS, GNSS und barometrische Höhenmesser sammeln Daten über die Position im (dreidimensionalen) Raum. Zu diesen physischen Sensoren gehören auch Temperatur- und UV-Sensoren, die weitere Umgebungsdaten beisteuern. 

Um darüber hinaus physiologische Daten wie Herzfrequenz, Kalorienverbrauch oder bestimmte Gehirnaktivitäten zu messen, sind spezielle Sensortechnologien erforderlich. Sogenannte PPG-Sensoren (Photoplethysmographie) arbeiten mit LEDs am Wearable, die Licht durch die Haut schicken und anhand der Reflexion den Puls bestimmen können. Ähnlich funktioniert ein Pulsoxymeter: Aus den Wellenlängen des reflektierten Lichts lässt sich die Sauerstoffsättigung im Blut bestimmen. Noch in der Entwicklung sind tragbare Bioimpedanzsensoren, die Aufschluss über die Körperzusammensetzung geben (Fett, Wasser, Muskeln etc.). Wegen der hochfrequenten Signale ist der Energiebedarf solcher Sensoren höher, was Herausforderungen bei der Integration in ein Wearable mit sich bringt. 

The term perovskite (named after a Russian mineralogist) originally stood for calcium titanium oxide (Ca2TiO3), also known as calcium titanate. The term was later extended to materials that have a comparable special crystal structure (orthorhombic to cubic). Today, perovskite (Pk) refers to materials with the structure ABX3, where A, B and X can represent different elements and compounds. In addition to the Pk layer, a perovskite-based solar cell contains many other components - the best structure for optimum stability and maximum efficiency is being researched by many research institutes and companies worldwide.

The advantages of perovskite solar cells

Pk cells offer several advantages that make them an attractive alternative to Si cells. From 2009 to 2024, the efficiency of Pk cells achieved in the laboratory rose from 3.8 per cent to 26.1 per cent - almost as high as the highest value ever achieved by Si cells (26.8 per cent). However, while Si cells primarily convert red and infrared light, perovskites can also utilise shorter wave light. The most promising approach therefore seems to be to combine Pk and Si layers in order to utilise the full light spectrum for energy generation - more on these so-called tandem solar cells later.

Perovskites consume significantly less energy during production than silicon, which requires temperatures of over 1000°C - and due to the thin layers, much less material (by a factor of 100!) is consumed. The installation of Pk cells is more flexible thanks to additional options such as colour design and transparency. This makes Pk cells attractive for many surfaces that cannot be reached with Si cells, for example house walls, roofs with low load-bearing capacity and much more.

Eine Herausforderung im Betrieb stellt die Energieversorgung von Wearables dar. Um laufend Echtzeitdaten erfassen zu können, sind lange Akkulaufzeiten und geringer Energieverbrauch gefragt bei gleichzeitig stark limitiertem Platzangebot für die Integration einer Batterie. Unterstützen können hier Methoden des sogenannten Energy Harvesting: In Wearables verbaute Nanogeneratoren erzeugen Strom aus der Umgebung oder der Nähe zum menschlichen Körper. Die entsprechenden Technologien sind noch in der Entwicklung und reichen von Mikro-Photovoltaik über Bio-Brennstoffzellen (z.B. Energiegewinnung aus Schweiß) bis hin zur Energiegewinnung aus Bewegung und Berührung (piezoelektrisch oder triboelektrisch); auch die Nutzung der Luftfeuchtigkeit (hydroelektrischer Effekt) wird erforscht. 

Kritisch ist auch das Thema Datensicherheit. Wearables sammeln sensible körperbezogene Daten, die nicht in die falschen Hände oder an die Öffentlichkeit geraten sollten. Wie unter anderen das Bundesamt für die Sicherheit in der Informationstechnik (BSI) warnt, kann ein Identitäts- oder Datendiebstahl zu finanziellen Schäden und Imageverlust führen. Im medizinischen Bereich besteht darüber hinaus die Gefahr der Manipulation der auf dem Wearable angezeigten Daten – mit der Folge ernsthafter Gesundheitsgefährdung, zum Beispiel bei der Selbstmedikation. Das BSI rät daher, auf sichere Hard- und Software von Wearables zu achten und bei der Nutzung bewusst Sicherheitsrisiken zu berücksichtigen (z.B. bei der Vernetzung mit anderen Geräten).

What are the challenges?

So far, almost all efficiency records and design achievements have been reached with perovskite cells in the laboratory and on small surfaces - scaling and industrialisation are still largely pending. The main problem in practice is the durability of the Pk cells: They are more sensitive to moisture and environmental influences than Si cells (service life is approx. 25-30 years), so their service life is currently estimated at months to a few years. Intensive research is currently underway to increase the service life.

There are several approaches, such as limiting ion mobility, reducing chemical reactions (through encapsulation) and using more robust boundary layers. In an article published in Nature at the beginning of the year, Chinese researchers describe how they have succeeded in creating stable Pk cells that also perform very well in long-term stress tests using a controlled ion movement limited to the perovskite layer.

What are tandem solar cells?

Vieles spricht dafür, dass Wearables weiter Marktanteile gewinnen werden: Die Geräte entwickeln sich weiter, werden immer erschwinglicher und funktionaler. Akkulaufzeiten verlängern sich, und Energy-Harvesting-Technologien eröffnen die Aussicht auf eine ununterbrochene Nutzung. Zudem macht die Kombination mit künstlicher Intelligenz Wearables auch für weniger technikaffine Menschen attraktiv – sie sind nun kein bloßes Gadget mehr, sondern begegnen dem Nutzer als wohlmeinendes und sehr gut informiertes Gegenüber – im Fall des Gesundheitsmonitorings einem Chefarzt oder Professor vergleichbar, den ich immer bei mir trage.

Auch in der Breite werden sich Wearables weiterentwickeln und vermehrt spezielle Einsatzzwecke abdecken – nicht nur im Privatleben, sondern auch in der Industrie, im Gesundheitswesen und weiteren, bisher noch gänzlich unerschlossenen Bereichen. Mit dem Leistungsumfang von Wearables steigt allerdings auch die Gefahr durch Missbrauch. Und je weiter die Geräte sich hardwareseitig entwickeln, desto herausfordernder wird es, die verbaute Elektronik verlässlich zu testen. Mit innovativen Kontaktierungstechnologien, etwa dem SleeveProbe™, zeigt INGUN immer wieder, wie besondere Prüfanforderungen effizient gemeistert werden können. Als Partner für die Technologie der Zukunft steht INGUN bereit, die dynamische Evolution der Wearables mit führender Prüftechnik zu unterstützen. 

Curious to find out more? You can find more topics about INGUN and the latest technologies in our newsletter: