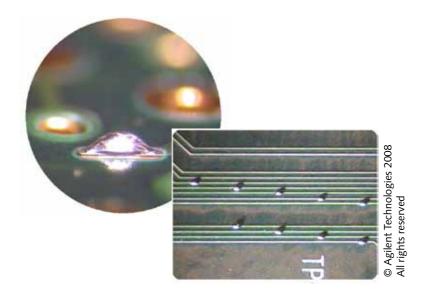


Bead Probe Contacting
Best contacting reliability



INGUN: The matching tip style for your bead

For bead probe technology - where small beads of solder are directly applied onto conductors or onto μ -vias - INGUN has developed special tip styles in close cooperation with global customers to be able to provide the ideal solution for the applicable bead.

Experience has shown that there are numerous different bead geometries, compositions and surfaces, which need to be contacted. For this reason, apart from the flat tip style (02), which was designed for contacting solder-resin-free and/or small beads, the fine-serrated tip (60) is also available. The fine, aggressive points of the tip style 60 enable reliable penetration of the surface of those beads that are suitably large enough and are covered with flux deposits. Due to the small distance/pitch between the individual points of the tip style 60, contacting of the beads is guaranteed without hitting/touching the solder-resin-lacquer.

The INGUN bead probes are 100% compatible with the standard series GKS-050/075/100/135/550. Therefore all the related receptacles and tools of these series can be used without exception.

Comment from a leading manufacturer in the field of consumer electronics on the subject of the INGUN tip style 60 when contacting "hard" bead probe solder:

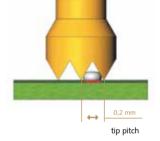
"I never got a PC board to pass contact-test with the flat style probes, whereas the PC board with the serrated style probes (2.0 N) passed contact-test on serveral PC boards. I never had this happen before."

ICT Development Engineer, USA

INGUN recommendations for tip styles

INGUN offers tip styles with a number of variants for bead probe contacting, i.e. the flat tip style 02 with various tip diameters as well as the fine-serrated tip style 60 with various tip diameters and serrated tip pitches from 0,15 to 0,25 mm.

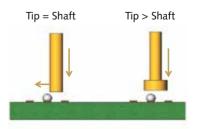
The **tip style 02** – flat tip – is preferably used for flux-free and/or small beads.


	Tip Style 02			Series		
			075	100	135	550
8	Ø 0,60 mm	х				x
ğ-di	Ø 0,90 mm		x	x	x	
	Ø 1,50 mm			x		

x = standard tip styles

The **tip style 60** – fine-serrated – is recommended for beads, which are bad to contact due to flux deposits and suitably large enough beads. Decisive for the choice of the tip style is the matching up of the tip pitch in relation to the size of the bead.

	Tip Style 60					Series		
TIP Style 60			050	075	100	135	550	
	Ø 0,50 mm		0,15 mm	х				x
Δ	Ø 0,60 mm	ı Sər	0,20 mm	х				x
Tip-6	Ø 0,64 mm	Pitches	0,20 mm		x	x		
-	Ø 0,90 mm	ij	0,20 mm		x	х	х	
	Ø 0,90 mm		0,25 mm	х				x



x = standard tip styles

INGUN recommendations for the geometry of the tip style

Tip styles with **tip diameter = shaft diameter** are suitable both for test fixture customizing with a guide plate as well as in the case of beads that need to be contacted close to components and subsequent damage of the components must be avoided. Tip styles with **tip diameter** > **shaft diameter**, however, are to be recommended for test fixture customizing without a guide plate and/or for larger PC board and test fixture tolerances, e.g. when contacting from the top-side. The larger tip diameter ensures reliable contacting of the beads and subsequently reduces the risk of the bead being sheared off when contacted sidewise.

Recommended Tip Style and Tip Geometry		Tip St	yle 02	Tip Style 60	
		tip = shaft	tip > shaft	tip = shaft	tip > shaft
	small beads (< 0,15 mm)	+	+	-	-
NS	large beads (> 0,15 mm)	0	O	+	+
Applications	close to components	+	-	+	-
plic	test fixture with guide plate	+	-	+	-
A	large tolerances on PC board	-	+	-	+
	large tolerances on test fixture	-	+	-	+

The problem of beads beeing sheared off

+ = good / o = middle / - = bad

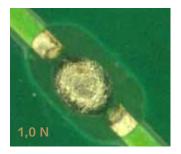
INGUN recommendation for spring forces

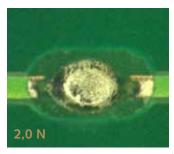
The choice of the ideal spring force in combination with the tip style, which has already been chosen, is dependent on the composition of the beads (i.e. contamination / solder hardness) and the intended deformation of the bead. Spring forces from 1,0 N to 3,0 N are available – which are chosen depending on the composition of the beads.

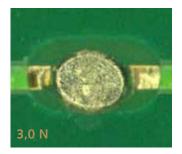
Choice of spring force and tip style depending on the type of contamination and flux deposits:

Reco	mmended	Tip Style 02	Tip Style 60	
Т	ip Style	contamination	contamination	
	1,0 N	1	1	
Spring Forces	1,5 N	1	1	
g Fc	2,0 N	1	1/2	
prin	2,8 N	1	1/2/3	
	3,0 N	1	1/2/3	

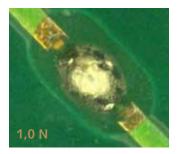
Examples:

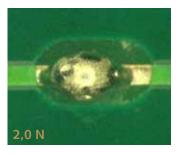

No contamination / flux deposits: Soft, fluid-type flux deposits: Hard, wax-type flux deposits: Contamination 1 (good) Contamination 2 (middle) Contamination 3 (bad)

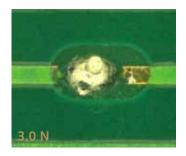

Choice of spring force and tip style depending on the hardness of the solder:


Reco	mmended Tip Style	Tip Style 02	Tip Style 60
а	nd Spring Force	solder	solder
ırces	1,0 N	1	1
	1,5 N	1/2	1/2
g Fc	2,0 N	2	2/3
Spring Forces	2,8 N	-	3
	3,0 N	-	3

Examples:


Sn 63 = 12.8 HV: SAC 305 = 17.7 HV: Innolot = 33.6 HV: Hardness 1 (soft) Hardness 2 (middle) Hardness 3 (hard)





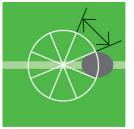
Example: Contacting SAC solder with tip style 02 and various spring forces

Example: Contacting SAC solder with tip style 60 and various spring forces

INGUN Recommendations for Tip Styles

The **tip style 79** - Star - is recommended (due to the self-cleaning, horizontal arrangement of the knife-type edges) for "elongated/small" and "large" beads with flux deposits, that can stick to the tip. Decisive for the choice of the tip style # 79 is the matching up of the bead geometry and the angle of the knife-shaped edges as well as the most suitable contacting area.

Tip Style 79			Ser	ies	
		050	075	100	550
8	Ø 0,50 mm	X			X
Tip-6	Ø 0,64 mm		X	х	
	Ø 0,90 mm			х	



Available Tip Styles GKS-075

Good matching up of contacting area and length of bead

Poor matching up of contacting area and angle of knife-edges too large for length of bead.

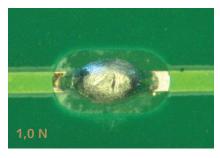
INGUN Recommendations for Spring Forces

The choice of the ideal spring force in combination with the tip style, which has already been chosen, is dependent on the composition of the beads (i.e. contamination / solder hardness) and the intended deformation of the bead. Spring forces from 1,0 N to 3,0 N are available - which are chosen depending on the composition of the beads.

Choice of spring force depending on the type of contamination and flux deposits:

Recommended		Tip Style 79
Spri	ng Force	contamination
S	1,0 N	1
Forces	1,5 N	1/2
lg Fe	2,0 N	1/2
Spring	2,8 N	1/2/3
	3,0 N	1/2/3

Examples:


No contamination / flux deposits: Soft, fluid-type flux deposits: Hard, wax-type flux deposits: Contamination 1 (good) Contamination 2 (middle) Contamination 3 (bad)

Choice of spring force depending on the hardness of the solder:

Recommended Spring Force		Tip Style 79 solder
Spring Forces	1,0 N	1
	1,5 N	1/2
	2,0 N	2/3
	2,8 N	3
	3,0 N	3

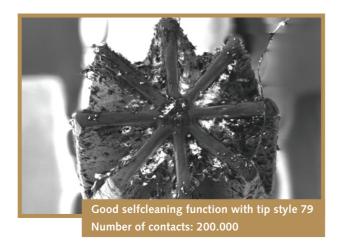
Examples:

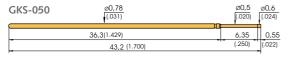
Sn 63 = 12.8 HV: SAC 305 = 17.7 HV: Innolot = 33.6 HV: Hardness 1 (soft) Hardness 2 (middle) Hardness 3 (hard)

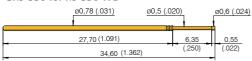
Example: Contacting SAC-solder with tip style 79 and various spring forces

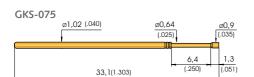
Customer Production Test Results:

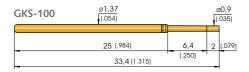
GKS 075 379 090 A 2000 Soldering Paste Type 2 / PCB Surface 1


- Maximum test probe durability
- · Highest level of contacting reliability
- Optimum process stability




GKS 050/075/100/135/550

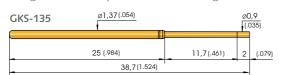

≥ 1,27 / 1,91 / 2,54 mm ≥ 50 / 75 / 100 Mil


ICT-/FCT test probes

GKS-550 for KS-550 WL

Available Tip Styles GKS-050/550 Tip Style 3 02 Ø 0.60 Α 3 60 Ø 0.50 (.020)

A	Available Tip Styles GKS-050/550					
Material		Tip Style	Ø (inch)	Plating		
3	60	Distance between points: 0,20 mm	Ø 0,60 (.024)	Α		
3	60	Distance between points: 0,25 mm	Ø 0,90 (.035)	Α		
3	79		Ø 0,50 (.020)	Α		


	Available Tip Styles GKS-075					
3	02		Ø 0,90 (.035)	Α		
3	60	Distance between points: 0,20 mm	Ø 0,64 (.025)	Α		

	Available Tip Styles GKS-075					
3	60	Distance between points: 0,20 mm	Ø 0,90 (.035)	Α		
3	79		Ø 0,64 (.025)	Α		

	Available Tip Styles GKS-100					
3	60	Distance between points: 0,20 mm	Ø 0,90 (.035)	Α		
3	79		Ø 0,64 (.025)	Α		
3	79		Ø 0,90 (.035)	Α		

Long-stroke test probe for dual-stage test fixtures

Available Tip Styles GKS-135				
3	02		Ø 0,90 (.035)	Α
3	60	Distance between points: 0,20 mm	Ø 0,90 (.035)	Α

Mechanical Data

Work. stroke 050/075/100/550: 4,3 mm

(.169)

BeCu, gold-plated

Standard:

Operating Temperature

-40° up to +80° C

Max. stroke 050/075/100/550:

Barrel: 6,35 mm Spring: (.250)

Materials

Plunger:

nickel-silver or bronze, gold-plated

steel, gold-plated

Receptacle:

nickel-silver or brass,

gold-plated

Work. stroke GKS-135: Max. stroke GKS-135:

Spring force of GKS-050/550:

9,3 mm (.366) 11,35 mm (.448)

Spring force of GKS-100: Spring force at work. stroke: 1,5 N (3.6oz)

Spring force at work. stroke: 1,5 N (5.4oz)

2,0 N (7.2oz); 3,0 N (10.8oz)

Collar height and installation height, receptacles, electrical data, mounting hole size: see compatible standard probe series in our latest Test Probe Catalogue.

Alternative: 2,0 N (7.2oz); 3,0 N (10.8oz)

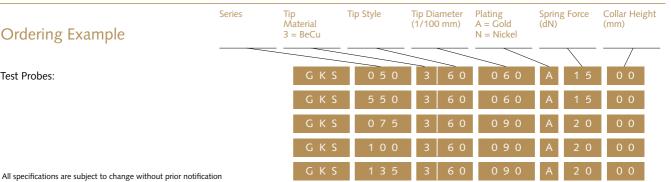
1,0 N (3.6oz); 2,0 N (7.2oz) (not for GKS-550) Spring force of GKS-135:

Alternative:

and KS see page 118 in our latest Test Probe Catalogue.

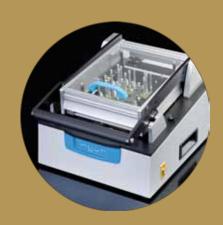
Spring force of GKS-075:

Alternative:


Spring force at work. stroke: 1,5 N (5.4oz) Alternative: 1,0 N (3.6oz); 2,0 N (7.2oz)

Spring force at work. stroke: 1,5 N (5.4oz)

2,8 N (10.1oz)


Ordering Example

Test Probes:

Test Probes and **Test Fixtures** by **INGUN**

Headquarters

INGUN Germany

Subsidiaries

INGUN Benelux INGUN China **INGUN** India INGUN Korea **INGUN** Mexico INGUN España **INGUN** Switzerland INGUN UK **INGUN USA**

Europe

Austria Benelux Bosnia-Herzegovina Croatia Czech Republic Denmark Estonia Finland France Germany Hungary

Italy Norway Poland Portugal Romania Serbia

Slovenia Slovak Republic

Spain Sweden Switzerland Turkey

United Kingdom

Asia

China Hong Kong India Japan Korea Malaysia Taiwan Thailand Vietnam

Africa

South Africa Tunisia

Australia

Australia New Zealand

America

Argentina Brazil Canada Mexico USA

The addresses of the international agencies can be found under www.ingun.com

INGUN Prüfmittelbau GmbH

Max-Stromeyer-Straße 162 78467 Konstanz

Germany

Tel. +49 7531 8105-0 Fax +49 7531 8105-65 info@ingun.com

www.ingun.com